РАБОЧАЯ ПРОГРАММА ЭЛЕКТИВНОГО КУРСА «ПРАКТИКУМ ПО ГЕОМЕТРИИ» (ФГОС СОО-2022 с учетом ФОП СОО).

МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ
Министерство образования, науки и молодежной политики
Краснодарского края
Управление образования администрации муниципального образования
город Армавир
МБОУ - СОШ № 14

РАССМОТРЕНО
руководитель ШМО учителей
физико-математического цикла
__________ Капаева Г.Н.
Протокол № 1
от «29» августа 2024 г.

СОГЛАСОВАНО
заместитель директора по УР
_____________ Осипян К.В.
Протокол № 1
от «30» августа 2024 г.

УТВЕРЖДЕНО
директор
__________ Силин А.С.
Приказ № 495/2.4.3
от «30» августа 2024 г.

РАБОЧАЯ ПРОГРАММА
учебного предмета «Практикум по геометрии»
для обучающихся 11 класса

город Армавир, 2024 г.

Пояснительная записка
Рабочая программа элективного курса «Практикум по геометрии»
разработана в соответствии с требованиями ФГОС СОО, на основе
Федеральной рабочей программы по учебному предмету «Математика»
базовый уровень, с учетом федеральной программы воспитания.
Рабочая программа предназначена для обучающихся 11 классов и
рассчитана на 34 часа в год.
Цель элективного курса:
•

создать условия для формирования устойчивых знаний обучающихся

по геометрии (планиметрии и стереометрии) на базовом уровне.
Задачи элективного курса:
•

повысить мотивацию обучающихся к изучению геометрии;

•

создать

«ситуацию

успеха»

у

обучающихся

при

решении

геометрические

знания

геометрических задач;
•

обобщить

и

систематизировать

обучающихся;
•

совершенствовать практические навыки, математическую культуру

обучающихся;
•

уметь

применять

геометрический

аппарат

для

решения

разнообразных математических задач базового и повышенного уровня
сложности.
1.

Планируемые результаты освоения элективного курса

Изучение

геометрии

по

данной

программе

способствует

формированию у обучающихся личностных, метапредметных и предметных
результатов

обучения,

соответствующих

требованиям

федерального

государственного образовательного стандарта среднего общего образования
и федеральной программе воспитания.
Личностные результаты:
1 ) гражданское воспитание: сформированность гражданской позиции
обучающегося как активного и ответственного члена российского общества,
представление о математических основах функционирования различных

структур, явлений, процедур гражданского общества (выборы, опросы и
другое);
2) патриотическое

воспитание:

сформированность

российской

гражданской идентичности, уважения к прошлому и настоящему российской
математики, ценностное отношение к достижениям российских математиков
и российской математической школы;
3) духовно-нравственного воспитания: осознание духовных ценностей

российского народа, сформированность нравственного сознания, связанного
с практическим применением достижений науки и деятельностью учёного;
4) эстетического

воспитания:

эстетическое отношение к

миру,

включая эстетику математических закономерностей, объектов, задач,
решений, рассуждений, восприимчивость к математическим аспектам
различных видов искусства;
5) физического воспитания: сформированность умения применять

математические знания в интересах здорового и безопасного образа жизни,
ответственное отношение к своему здоровью;
6) трудового воспитания: готовность к труду, осознание ценности

трудолюбия, интерес к различным сферам профессиональной деятельности,
связанным с математикой, умение совершать осознанный выбор будущей
профессии и реализовывать собственные жизненные планы; готовность к
активному участию в решении практических задач математической
направленности;
7) экологического

воспитания:

сформированность

экологической

культуры, ориентация на применение математических знаний для решения
задач в области окружающей среды;
8) ценности научного познания: сформированность мировоззрения,

соответствующего современному уровню развития науки и общественной
практики, понимание математической науки как сферы человеческой
деятельности, этапов её развития и значимости для развития цивилизации,
овладение языком математики и математической культурой как средством
познания мира, готовность осуществлять проектную и исследовательскую

деятельность индивидуально и в группе.
Метапредметные результаты:
Познавательные универсальные учебные действия.
Базовые

логические

действия:

выявлять

и

характеризовать

существенные признаки математических объектов, понятий, отношений
между понятиями, формулировать определения понятий, устанавливать
существенный признак классификации, основания для обобщения и
сравнения, критерии проводимого анализа; проводить самостоятельно
доказательства математических утверждений (прямые и от противного),
выстраивать

аргументацию,

приводить

примеры

и

контрпримеры,

обосновывать собственные суждения и выводы; выбирать способ решения
учебной задачи.
Базовые исследовательские действия: использовать вопросы как
исследовательский

инструмент

познания,

формулировать

вопросы,

фиксирующие противоречие, проблему, устанавливать искомое и данное,
формировать гипотезу, аргументировать свою позицию, мнение; проводить
самостоятельно

спланированный

эксперимент,

исследование

по

установлению особенностей математического объекта, явления, процесса,
выявлению

зависимостей

между

объектами,

явлениями,

процессами;

самостоятельно формулировать обобщения и выводы по результатам
проведённого

наблюдения,

исследования,

оценивать

достоверность

полученных результатов, выводов и обобщений; прогнозировать возможное
развитие процесса, а также выдвигать предположения о его развитии в новых
условиях.
Работа с информацией: выявлять дефициты информации, данных,
необходимых для ответа на вопрос и для решения задачи; выбирать
информацию

из

источников

различных

типов,

анализировать,

систематизировать и интерпретировать информацию различных видов и
форм представления; структурировать информацию, представлять её в
различных формах. Коммуникативные универсальные учебные действия:

воспринимать и формулировать суждения в соответствии с условиями
и целями общения, ясно, точно, грамотно выражать свою точку зрения в
устных и письменных текстах, давать пояснения по ходу решения задачи,
комментировать полученный результат;
сопоставлять свои суждения с суждениями других участников диалога,
обнаруживать

различие

и

сходство

позиций,

в

корректной

форме

формулировать разногласия, свои возражения; представлять результаты
решения задачи, эксперимента, исследования, проекта, самостоятельно
выбирать формат выступления с учётом задач презентации и особенностей
аудитории. Регулятивные универсальные учебные действия
Самоорганизация:

составлять

план,

алгоритм

решения

задачи,

выбирать способ решения с учётом имеющихся ресурсов и собственных
возможностей. Самоконтроль, эмоциональный интеллект: владеть навыками
познавательной

рефлексии

как

осознания

совершаемых

действий

и

мыслительных процессов, их результатов, владеть способами самопроверки,
самоконтроля процесса и результата решения математической задачи.
Совместная деятельность: понимать и использовать преимущества
командной и индивидуальной работы при решении учебных задач,
принимать цель совместной

деятельности, планировать организацию

совместной работы; участвовать в групповых формах работы.
Предметные результаты:
пользоваться признаками равенства треугольников, использовать
признаки и свойства равнобедренных треугольников при решении задач;
распознавать основные виды четырёхугольников, их элементы, пользоваться
их

свойствами

при

решении

геометрических

задач;

знать

тригонометрические функции острых углов;
проводить логические рассуждения с использованием геометрических
теорем. распознавать основные виды многогранников (пирамида, призма,
прямоугольный параллелепипед, куб);

вычислять объёмы и площади поверхностей многогранников (призма,
пирамида)

с

применением

формул,

вычислять

соотношения

между

площадями поверхностей, объёмами подобных многогранников;
применять геометрические факты для решения стереометрических
задач, предполагающих несколько шагов решения;
моделировать реальные ситуации на языке геометрии, исследовать
построенные модели с использованием геометрических понятий и теорем,
аппарата алгебры, решать практические задачи, связанные с нахождением
геометрических величин;
оперировать понятиями: цилиндр, конус, сферическая поверхность;
распознавать тела вращения

(цилиндр, конус, сфера и

шар);

классифицировать взаимное расположение сферы и плоскости;
оперировать понятиями: шаровой сегмент, основание сегмента, высота
сегмента, шаровой слой, основание шарового слоя, высота шарового слоя,
шаровой сектор; вычислять объёмы и площади поверхностей тел вращения,
геометрических тел с применением формул;
оперировать

понятиями:

многогранник,

вписанный

в

сферу

и

описанный около сферы, сфера, вписанная в многогранник или тело
вращения; вычислять соотношения между площадями поверхностей и
объёмами подобных тел; строить сечения тел вращения;
извлекать, интерпретировать и преобразовывать информацию о
пространственных геометрических фигурах;
выполнять действия сложения векторов, вычитания векторов и
умножения вектора на число;
находить сумму векторов и произведение вектора на число, угол между
векторами,

скалярное

произведение,

раскладывать

вектор

по

двум

неколлинеарным векторам; задавать плоскость уравнением в декартовой
системе координат;
применять геометрические факты для решения стереометрических
задач, предполагающих несколько шагов решения, если условия применения
заданы в

явной

форме;

решать

простейшие

геометрические

задачи

на

применение векторно-координатного метода;
решать задачи на доказательство математических отношений и
нахождение геометрических величин по образцам или алгоритмам, применяя
известные методы при решении стандартных математических задач;
применять полученные знания на практике: анализировать реальные
ситуации и применять изученные понятия в процессе поиска решения
математически

сформулированной

ситуации на языке

проблемы,

моделировать

реальные

геометрии, исследовать построенные модели

с

использованием геометрических понятий и теорем, аппарата алгебры, решать
практические задачи, связанные с нахождением геометрических величин.
2.

Содержание курса

Повторение планиметрии (4 часа)
Треугольники. Виды треугольников. Сумма углов треугольника.
Внешние углы треугольника Углы в равнобедренном, равностороннем
треугольниках. Свойства углов параллелограмма, прямоугольника, ромба,
квадрата, трапеции. Вписанные и описанные окружности для треугольников,
четырехугольников, правильных многоугольников. Тригонометрические
функции острого угла в прямоугольном треугольнике. Теорема Пифагора.
Теорема, обратная теореме Пифагора. Значения синуса, косинуса, тангенса
для

углов

30°,

45°,

использованием

60°.

Вычисление

элементов

тригонометрических

треугольников

соотношений.

с

Площадь

параллелограмма. Площадь прямоугольника. Площадь ромба. Площадь
квадрата.

Площадь

трапеции.

Площадь

треугольника.

Площадь

многоугольника.
Повторение курса геометрии 10 класса (4 часа)
Простейшие пространственные фигуры на плоскости: тетраэдр, куб,
параллелепипед, построение сечений. Призма: n-угольная призма, грани и
основания призмы, прямая и наклонная призмы, боковая и полная
поверхность призмы. Параллелепипед, прямоугольный параллелепипед и его
свойства. Пирамида: n-угольная пирамида, грани и основание пирамиды,

боковая и полная поверхность пирамиды, правильная и усечённая пирамида.
Вычисление элементов многогранников: рёбра, диагонали, углы. Площадь
боковой поверхности и полной поверхности прямой призмы, площадь
оснований, теорема о боковой поверхности прямой призмы. Площадь
боковой поверхности и поверхности правильной пирамиды, теорема о
площади усечённой пирамиды. Понятие об объёме. Объём пирамиды,
призмы. Подобные тела в пространстве. Соотношения между площадями
поверхностей, объёмами подобных тел.
Тела вращения (20 часов).
Цилиндр: основания и боковая поверхность, образующая и ось,
площадь боковой и полной поверхности. Конус: основание и вершина,
образующая и ось, площадь боковой и полной поверхности. Усечённый
конус: образующие и высота, основания и боковая поверхность. Сфера и
шар: центр, радиус, диаметр, площадь поверхности сферы. Взаимное
расположение сферы и плоскости, касательная плоскость к сфере, площадь
сферы. Изображение тел вращения на плоскости. Развёртка цилиндра и
конуса. Комбинации тел вращения и многогранников. Многогранник,
описанный около сферы, сфера, вписанная в многогранник, или тело
вращения. Понятие об объёме. Основные свойства объёмов тел. Теорема об
объёме прямоугольного параллелепипеда и следствия из неё. Объём
цилиндра, конуса. Объём шара и площадь сферы. Подобные тела в
пространстве. Соотношения между площадями поверхностей, объёмами
подобных тел. Сечения цилиндра (параллельно и перпендикулярно оси),
сечения конуса (параллельное основанию и проходящее через вершину),
сечения шара.
Векторы и координаты в пространстве (6 часов).
Вектор на плоскости и в пространстве. Сложение и вычитание
векторов. Умножение вектора на число. Разложение вектора по трём
некомпланарным векторам. Правило параллелепипеда. Решение задач,
связанных с применением правил действий с векторами. Прямоугольная
система координат в пространстве. Координаты вектора. Простейшие задачи

в координатах. Угол между векторами. Скалярное произведение векторов.
Вычисление углов между прямыми и плоскостями. Координатно-векторный
метод при решении геометрических задач.

3.

Тематическое (календарно-тематическое) планирование элективного курса

№ занятия

Тема занятия

Колво
часов

1.

Повторение планиметрии. Треугольники

1

2.

Повторение планиметрии. Четырехугольники

1

3.

Повторение планиметрии. Площади многоугольников

1

4.

Повторение планиметрии. Окружность

1

5.

Повторение курса геометрии 10 класса. Куб

1

6.

Повторение курса геометрии 10 класса. Параллелепипед

1

7.

Повторение курса геометрии 10 класса. Призма

1

8.

Повторение курса геометрии 10 класса. Пирамида

1

9.

Тела вращения. Цилиндр. Виды сечений

1

10. Тела вращения. Площадь поверхности цилиндра
11. Тела вращения. Конус.

1
1

Виды сечений

12. Тела вращения. Площадь поверхности конуса
13. Тела вращения. Усеченный конус

1
1

Основные виды
деятельности
обучающихся (на
уровне учебных
действий)
Решать простейшие
задачи на нахождение
длин и углов в
геометрических фигурах,
применять теорему
Пифагора, теоремы
синусов и косинусов.
Находить площадь
многоугольника, круга.
Распознавать подобные
фигуры, находить
отношения длин и
площадей. Использовать
при решении
стереометрических задач
факты и методы
планиметрии.
Параллелепипед,
прямоугольный
параллелепипед и его

Универсальные
учебные
действия
(УУД),
межпредметные
понятия
Личностные УУД
Патриотическое воспитание:
ценностное отношение к
достижениям российских
математиков и российской
математической школы.
Гражданское и воспитание:
представление о
математических основах
функционирования
различных структур,
явлений, процедур
гражданского общества.
Духовно-нравственное
воспитание: осознание
духовных ценностей
российского народа.
Трудовое воспитание:
готовность к труду,
осознание ценности

14. Тела вращения. Сфера и шар
15. Шар, вписанный и описанный

1

16. Проверочная работа
17. Практическая работа «Сечения тел вращения»

1

18. Площадь поверхности цилиндра. Объём цилиндра
19. Площадь поверхности цилиндра. Объём цилиндра

1

20. Объемы тел. Конус
21. Объемы тел. Конус

1

22. Объемы тел. Усеченный конус
23. Объемы тел. Шар

1

24. Объемы тел. Шар
25. Комбинация тел. Цилиндр, призма

1

26. Комбинация тел. Цилиндр, шар
27. Комбинация тел. Цилиндр, конус. Конус, шар

1

28. Комбинация тел. Конус, шар
29. Векторы

1

30. Векторы и координаты
31. Скалярное произведение векторов

1

32. Угол между векторами

1

1

1

1

1

1

1

1

1

1

свойства. Пирамида: nугольная пирамида,
грани и основание
пирамиды; боковая и
полная поверхность
пирамиды; правильная и
усечённая пирамида.
Элементы призмы и
пирамиды. Находить
площадь полной и
боковой поверхности
пирамиды. Находить
площадь полной или
боковой поверхности
призмы.
Использовать формулы
для вычисления площади
боковой поверхности
цилиндра, конуса, сферы.
Изображать цилиндр и
его сечения плоскостью,
проходящей через его
ось, параллельной или
перпендикулярной оси.
Находить площади этих
сечений. Изображать
конус и его сечения
плоскостью, проходящей
через ось, и плоскостью,

трудолюбия, интерес к
различным сферам
профессиональной
деятельности, связанным с
математикой.
Эстетическое воспитание:
эстетическое отношение к
миру, включая эстетику
математических
закономерностей, объектов,
задач
Ценности научного
познания: понимание
математической науки как
сферы человеческой
деятельности.
Физическое воспитание:
сформированность умения
применять математические
знания в интересах
здорового и безопасного
образа жизни.
Экологическое воспитание:
ориентация на применение
математических знаний для
решения задач в области
окружающей среды
Познавательные УУД:
Базовые логические

33. Проверочная работа
34. Итоговое занятие по обобщению и систематизации
знаний за курс

1
1

перпендикулярной к оси.
Использовать формулы
объёмов: призмы,
цилиндра, пирамиды,
конуса; усечённой
пирамиды и усечённого
конуса. Решать
стереометрические
задачи, связанные с
вычислением объёмов.
Решать
стереометрические
задачи, связанные с
соотношением объёмов и
поверхностей
подобных тел в
пространстве.
Складывать, вычитать
векторы, умножать
вектор на число.
Выражать скалярное
произведение векторов
через их координаты,
вычислять угол между
двумя векторами, двумя
прямыми.

действия: выявлять и
характеризовать
существенные признаки
математических объектов,
понятий, формулировать
устанавливать существенный
признак классификации,
проводить самостоятельно
доказательства
математических
утверждений, выстраивать
аргументацию; выбирать
способ решения учебной
задачи.
Базовые исследовательские
действия: аргументировать
свою позицию, мнение.
Работа с информацией:
выбирать
информацию из источников
различных типов,
анализировать,
систематизировать и
интерпретировать
информацию,
структурировать
информацию, представлять
её в различных формах.
Коммуникативные УУД:
воспринимать и

формулировать суждения в
соответствии с условиями и
целями общения, ясно,
ыражать свою точку зрения,
давать пояснения по ходу
решения задачи,
комментировать полученный
результат;
сопоставлять свои суждения
с суждениями других
представлять результаты
решения задачи.
Регулятивные УУД
Самоорганизация: оставлять
план, алгоритм решения
задачи, выбирать способ
решения.
Самоконтроль,
эмоциональный интеллект:
владеть способами
самопроверки, самоконтроля
процесса и результата
решения математической
задачи:
Совместная деятельность:
понимать и использовать
преимущества командной и
индивидуальной работы при
решении учебных задач.
Межпредметные понятия:

сравнение, схема,
расстояние, признаки,
свойства, классификация,
площадь, соотношения,
формула, аналогия,
обобщение, систематизация,
интерпретация, теорема,
задача.

УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ОБРАЗОВАТЕЛЬНОГО
ПРОЦЕССА
ОБЯЗАТЕЛЬНЫЕ УЧЕБНЫЕ МАТЕРИАЛЫ ДЛЯ УЧЕНИКА
Математика: алгебра и начала математического анализа, геометрия. Геометрия,
10-11 классы/ Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др., Акционерное
общество «Издательство «Просвещение»
Учебное пособие для обучающихся «Практикум по геометрии, 11 класс», ГБОУ
ИРО Краснодарского края, 2024.

МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ ДЛЯ УЧИТЕЛЯ
Учебно-методическое пособие для учителя «Реализация элективного курса
«Практикум по геометрии», 11 класс», ГБОУ ИРО Краснодарского края, 2024.

ЦИФРОВЫЕ ОБРАЗОВАТЕЛЬНЫЕ РЕСУРСЫ И РЕСУРСЫ СЕТИ
ИНТЕРНЕТ
Библиотека ЦОК https://urok.apkpro.ru
Российская электронная школа http://resh.edu.ru/
Открытый

банк

заданий

ЕГЭ.

Математика.

Базовый

уровень

https://ege.fipi.ru/bank/index.php7proHE040A72A1A3DABA14C90C97E0B6EE7D
C,
Открытый

банк

заданий

ЕГЭ.

Математика.

Профильный

уровень

https://ege.fipi.ru/bank/index.php7proHAC437B34557F88EA4115D2F374B0A07B
Образовательный портал для подготовки к экзаменам. Математика Профильный
уровень. https://ege.sdamgia.ru/


Наверх

https://армавир14.школакубани.рф

На сайте используются файлы cookie. Продолжая использование сайта, вы соглашаетесь на обработку своих персональных данных. Подробности об обработке ваших данных — в политике конфиденциальности.

Функционал «Мастер заполнения» недоступен с мобильных устройств.
Пожалуйста, воспользуйтесь персональным компьютером для редактирования информации в «Мастере заполнения».